DATA LINK PROTOCOLS

Gursharan Singh Tatla mailme@gursharansingh.in

Data Link Protocols

- Data Link Protocols are sets of rule and regulations used to implement data link layer.
- They contain rules for:
 - Line Discipline
 - Flow Control
 - Error Control

Types of Data Link Protocols

 Data Link Protocols are divided into two categories:

- Asynchronous Protocols
- Synchronous Protocols

Asynchronous Protocols

- Asynchronous protocols treat each character in a bit stream independently.
- These protocols are used in modems.
- They use start and stop bits, and variable gaps between characters.
- They are slower than synchronous protocols in transmitting data.

Asynchronous Protocols

- The different asynchronous protocols are:
 - XMODEM
 - YMODEM
 - ZMODEM
 - Block Asynchronous Transmission (BLAST)
 - Kermit

XMODEM

- It is a half duplex stop & wait protocol.
- It is used for telephone line communication between PCs.
- The sender sends a frame to receiver & waits for ACK frame.
- The receiver can send one cancel signal (CAN) to abort the transmission.
- The frame format of XMODEM is:

SOH	Header	Data	CRC
1 Byte	2 Bytes	128 Bytes	

6

XMODEM

- The various fields of frame are:
 - **SOH:** It is start of header. It is 1 byte field.
 - **Header:** It contains the sequence number. It is 2 bytes in length.
 - Data: This field holds 128 bytes of data.
 - CRC: It is Cyclic Redundancy Check. This field checks the errors in data field.

YMODEM

- This protocol is similar to XMODEM with the following major differences:
 - Two cancel signals (CAN) are used to abort the transmission.
 - The data field is 1024 bytes long.
 - ITU-T CRC-16 is used for error checking.

ZMODEM

It is a combination of XMODEM and YMODEM.

BLAST

- BLAST is more powerful than XMODEM.
- It is a full duplex protocol.
- It uses sliding window flow control.

Kermit

- It is a terminal program as well as file transfer protocol.
- It is similar in operation to XMODEM, except that sender has to wait for a negative acknowledgement (NAK) before it starts transmission.

Synchronous Protocols

- Synchronous Protocols take the whole bit stream and divide it into characters of equal size.
- These protocols have high speed and are used for LAN, WAN and MAN.
- Synchronous protocols are categorized into two groups:
 - Character-Oriented Protocol
 - Bit-Oriented Protocol

Character-Oriented Protocol

- It interprets frame as a series of characters.
- These are also known as Byte-Oriented Protocols.
- Control information is inserted as separate control frames or as addition to existing data frame.
- The example of character-oriented protocol is Binary Synchronous Communication (BSC) developed by IBM.

Bit-Oriented Protocol

- It interprets frame as a series of bits.
- Control information can be inserted as bits depending on the information to be contained in the frame
- Bit-oriented protocol can pack more information into shorter frames.
- The examples of bit-oriented protocol are:
 - Synchronous Data Link Control (SDLC)
 - High Level Data Link Control (HDLC)

Synchronous Data Link Control (SDLC) Protocol

- SDLC protocol was developed by IBM in 1975.
- After developing SDLC, IBM submitted it to American National Standard Institute (ANSI) and to International Standard Organization (ISO) for acceptance.
- ANSI modified it to ADCCP (Advanced Data Communication Control Procedure.
- ISO modified it to HDLC (High Level Data Link Control).

Synchronous Data Link Control (SDLC) Protocol

• The frame format of SDLC is:

01111110

Flag Address Control User Data ECF Flag

8-Bit 8-Bit 16-Bit

- The flag sequence of 8-bits 01111110 marks the beginning and ending of the frame.
- Address field contains the address of the receiver.
- Control field carries the sequence number, acknowledgement, requests and responses.

Synchronous Data Link Control (SDLC) Protocol

• The frame format of SDLC is:

01111110

Flag Address Control User Data ECF Flag

8-Bit 8-Bit 16-Bit

- The user data field carries the data and is of variable length.
- ECF stands for Error Checking Field and is of 16bits. It is used for error control.

High Level Data Link Control (HDLC) Protocol

- HDLC came into existence after ISO modified the SDLC protocol.
- It is a bit-oriented protocol that supports both half and full duplex communication.
- Systems using HDLC are characterized by:
 - Station Types
 - Configuration.
 - Response Modes

Station Types

- To make HDLC protocol applicable to various network configurations, three types of stations have been defined:
 - Primary Station
 - Secondary Station
 - Combined Station

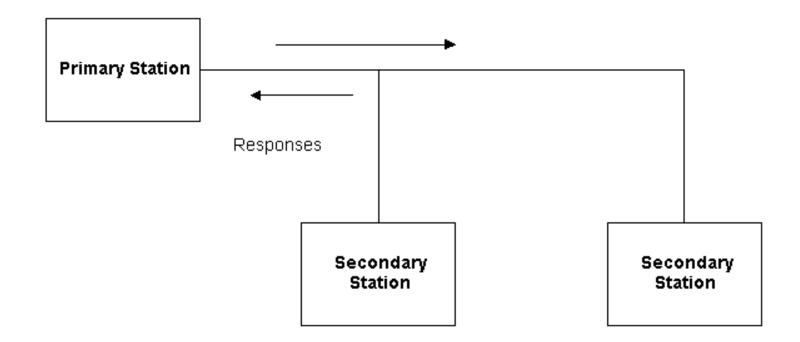
Primary Station

- It has complete control over the link at any time.
- It has the responsibility of connecting & disconnecting the link.
- The frames sent by primary station are called commands.

Secondary Station

- All the secondary stations work under the control of primary station.
- The frames sent by secondary station are called responses.

Combined Station

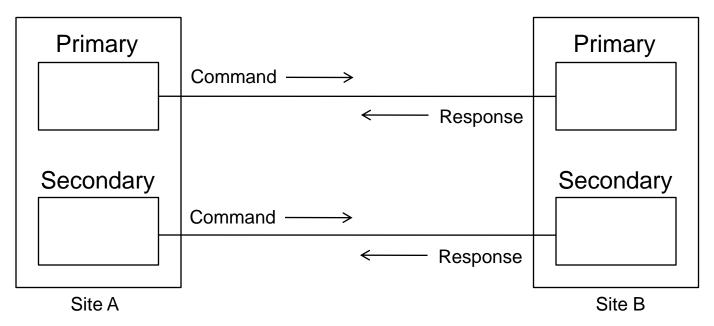

- A combined station can behave either as primary or as secondary station.
- It can send commands as well as responses.

Configuration

- Configuration defines how the various stations are connected to a link.
- There are three possible configurations:
 - Unbalanced Configuration
 - Symmetrical Configuration
 - Balanced Configuration

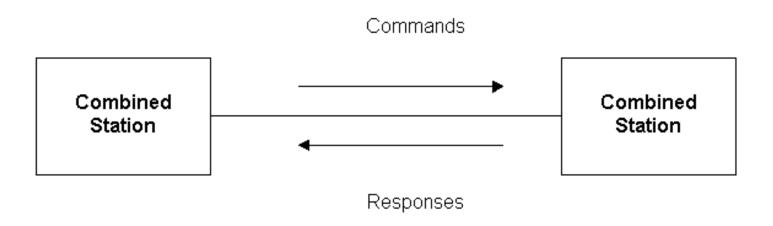
Unbalanced Configuration

 This type of configuration exists if one station is primary and other is secondary.



Unbalanced Configuration

- It can further be of two types:
 - Point-to-Point Unbalanced Configuration:
 - If there is one primary and one secondary station.
 - Multipoint Unbalanced Configuration:
 - If there is one primary and many secondary stations.


Symmetrical Configuration

- In this configuration, both sites contain two stations: one primary and one secondary.
- Primary station of one site is linked with secondary station of the other and vice versa.

Balanced Configuration

- In this configuration, both sites have combined stations.
- These combined stations are connected with single link.
- This single link can be controlled by either station.

Response Modes

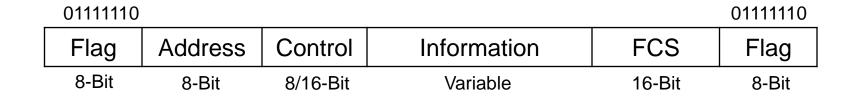
- HDLC supports three modes of communication between stations:
 - Normal Response Mode (NRM)
 - Asynchronous Response Mode (ARM)
 - Asynchronous Balanced Mode (ABM)

Normal Response Mode (NRM)

- In this mode, primary station controls the link.
- Secondary station seeks permission from primary before transmitting the data.

Asynchronous Response Mode (ARM)

- In this mode, if channel is idle, secondary station may initiate the transmission without seeking permission from the primary.
- If any secondary station wants to communicate with other secondary station, the transmission is done via primary station only.


24-Mar-2011 www.eazynotes.com

Asynchronous Balanced Mode (ABM)

- This type of mode involves combined stations.
- There is no primary-secondary relationship, all stations are equal.
- Therefore, either of the combined station can initiate the transmission without seeking permission from the other.

Frame Structure in HDLC

Frame in HDLC can have six fields:

- Flag Field: It is the 8-bit field that contains 01111110. It marks the beginning and end of a frame.
- Address Field: This field contains the address of the receiver. It is 8-bit long.

Frame Structure in HDLC

Frame in HDLC can have six fields:

0111110					
Flag	Address	Control	Information	FCS	Flag
8-Bit	8-Bit	8/16-Bit	Variable	16-Bit	8-Bit

- Control Field: It carries the sequence number, acknowledgements, requests and responses. It can be of 8-bit or 16-bit.
- Information Field: It contains user data. Its length is different for different networks.

Frame Structure in HDLC

Frame in HDLC can have six fields:

 FCS Field: FCS stands for Frame Check Sequence. It is the error detection field and is 16bit long. It contains either 16-bit CRC or 32-bit CRC.

Types of Frames in HDLC

- HDLC defines three types of frames:
 - Information Frame (I-Frame):
 - I-Frames carry user data, and control information about user's data.
 - Supervisory Frame (S-Frame):
 - S-Frames carry flow & error control information.
 - Unnumbered Frame (U-Frame):
 - U-Frames are reserved for system management.
 - They are used to exchange session management & control information between the two connected devices.

Thank You Have a Nice Day