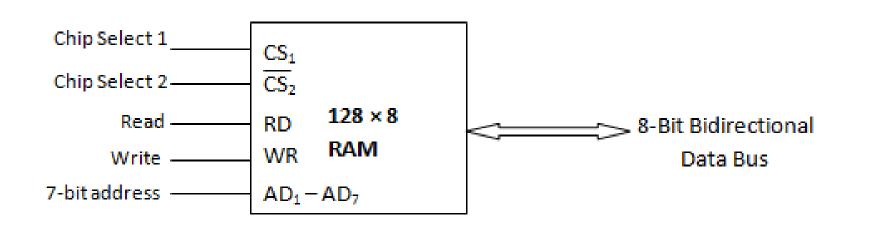
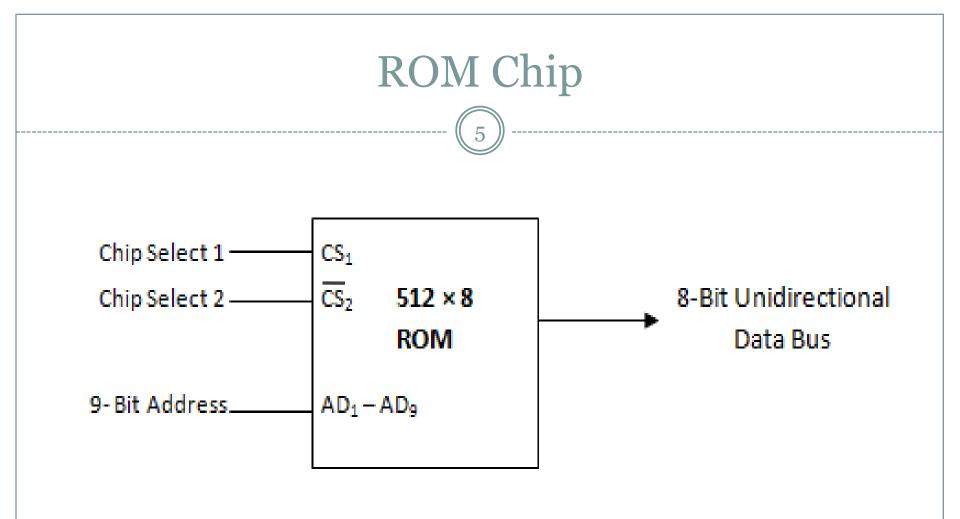
RAM and ROM Chips


MANINDER KAUR professormaninder@gmail.com

www.eazynotes.com

24-Nov-2010


- RAM is the main memory.
- It has bidirectional data bus that allows the transfer of data either from memory to CPU during a read operation or from CPU to memory during a write operation.
- The capacity of the memory is 128 words of eight bits (one byte) per word.
- This requires a 7-bit address and an 8-bit bidirectional data bus.
- •
- The *read* and *write* inputs specify the memory operation and the two *chip select* (CS) control inputs are for enabling the chip only when it is selected by the processor.

CS ₁	CS_2	RD	WR	Memory Operation	State of Data Bus
0	0	Х	Х	No Operation	High Impedance
0	1	Х	Х	No Operation	High Impedance
1	0	0	0	No Operation	High Impedance
1	0	0	1	Write Operation	Input Data to RAM
1	0	1	Х	Read Operation	Output Data from RAM
1	1	Х	Х	No Operation	High Impedance

ROM Chip

- ROM can only read, the data bus can only be in an output mode.
- For the same size chip, it is possible to have more bits of ROM than of RAM, because the internal binary cells in ROM occupy less space than in RAM.
- For this reason, the diagram specifies a 512 byte ROM, while the RAM has only 128 bytes.
- The nine address lines in the ROM chip specify any one of the 512 bytes stored in it.

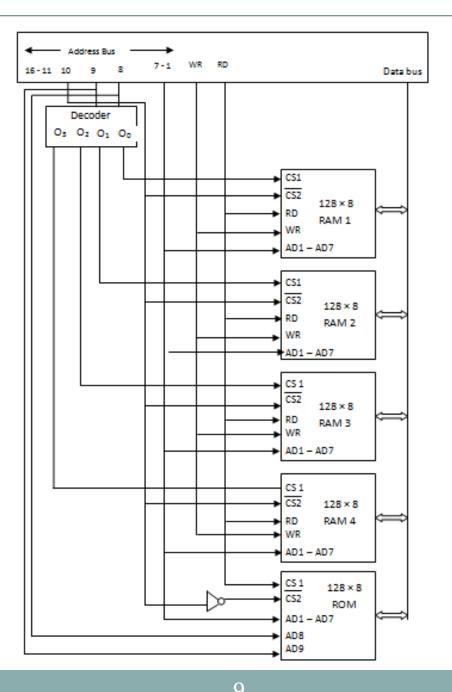


Memory Address Map

• A memory address map, is a pictorial representation of assigned address space for each chip in the system.

- Let us assume that a computer system needs 512 bytes of RAM and 512 bytes of ROM
- The RAM chips have 128 bytes and need seven address lines. The ROM chip has 512 bytes and needs 9 address lines.
- The X's are always assigned to the low order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM. It is now necessary to distinguish between 4 RAM chips by assigning to each a different address.

Device Select	Hexadecimal Address	10	9	8	7	6	5	4	3	2	1
RAM 1	0000 - 007F	0	0	0	Х	Х	Х	Х	Х	Х	Х
RAM 2	0080 - 00FF	0	0	1	Х	Х	Х	Х	Х	Х	Х
RAM 3	0100 - 017F	0	1	0	Х	Х	Х	Х	Х	Х	Х
RAM 4	0180 - 01FF	0	1	1	Х	Х	Х	Х	Х	Х	Х
ROM	0200 – 03FF	1	Х	Х	Х	Х	Х	Х	Х	Х	Х


Table 8.5: Memory Address Map for Microcomputer

MEMORY CONNECTION TO CPU

• The configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of ROM.

 The particular RAM chip selected is determined from lines 8 and 9 in the address bus. This is done through a 2 x 4 decoder whose outputs goes to the CS₁ inputs in each RAM chip.

• The selection between RAM and ROM is achieved through bus line 10.

THANKS A LOT