INSERT UNSORTED

Insert Unsorted ():

Description: Here **A** is a sorted linear array with **N** elements. **LOC** is the location where **ITEM** is to be inserted.

1.	Set I = N	[Initialize counter]
2.	Repeat While (I >= LOC)	
3.	Set $A[I+1] = A[I]$	[Move elements downward]
4.	Set I = I - 1	[Decrease counter by 1]
	[End of While Loop]	
5.	Set A[LOC] = ITEM	[Insert element]
6.	Set $N = N + 1$	[Reset N]
7.	Exit	

Explanation: Here A is an unsorted array stored in memory with N elements. This algorithm inserts a data element ITEM into the loc^{th} position in an array A. The first four steps create space in A by moving downward the elements of A. These elements are moved in reverse order i.e. first A[N], then A[N-1], A[N-2].... and last A[LOC], otherwise data will be overwritten. We first set I=N and then, using I as a counter, decrease it each time the loop is executed until I reaches LOC. In the next step, Step 5, it inserts ITEM into the array in the space just created. And at last, the total number of elements N is increased by 1.