ADDITION

Add ():

1.

7.

Exit

Description: Here **A** is a two – dimensional array with **M** rows and **N** columns and **B** is a two – dimensional array with **X** rows and **Y** columns. This algorithm adds these two arrays.

```
2. Print: Addition is not possible.
3. Exit
    [End of If]
4. Repeat For I = 1 to M
5. Repeat For J = 1 to N
6. Set C[I][J] = A[I][J] + B[I][J]
    [End of Step 5 For Loop]
    [End of Step 6 For Loop]
```

If $(M \neq X)$ or $(N \neq Y)$ Then

Explanation: First, we have to check whether the rows of array \mathbb{A} are equal to the rows of array \mathbb{B} or the columns of array \mathbb{A} are equal to the columns of array \mathbb{B} . if they are not equal, then addition is not possible and the algorithm exits. But if they are equal, then first for loop iterates to the total number of rows i.e. \mathbb{M} and the second for loop iterates to the total number of columns i.e. \mathbb{N} . In step 6, the element $\mathbb{A}[\mathbb{I}][\mathbb{J}]$ is added to the element $\mathbb{B}[\mathbb{I}][\mathbb{J}]$ and is stored in $\mathbb{C}[\mathbb{I}][\mathbb{J}]$ by the statement:

$$C[I][J] = A[I][J] + B[I][J]$$