
www.eazynotes.com Sabyasachi De Page No. 1

TRANSACTION MANAGEMENT

What is a Transaction?

A transaction is an event which occurs on the database. Generally a transaction reads a value from

the database or writes a value to the database. If you have any concept of Operating Systems, then

we can say that a transaction is analogous to processes.

Although a transaction can both read and write on the database, there are some fundamental

differences between these two classes of operations. A read operation does not change the image of

the database in any way. But a write operation, whether performed with the intention of inserting,

updating or deleting data from the database, changes the image of the database. That is, we may say

that these transactions bring the database from an image which existed before the transaction

occurred (called the Before Image or BFIM) to an image which exists after the transaction occurred

(called the After Image or AFIM).

The Four Properties of Transactions

Every transaction, for whatever purpose it is being used, has the following four properties. Taking

the initial letters of these four properties we collectively call them the ACID Properties. Here we try

to describe them and explain them.

Atomicity: This means that either all of the instructions within the transaction will be reflected in the

database, or none of them will be reflected.

Say for example, we have two accounts A and B, each containing Rs 1000/-. We now start a

transaction to deposit Rs 100/- from account A to Account B.

 Read A;

 A = A – 100;

 Write A;

 Read B;

 B = B + 100;

 Write B;

www.eazynotes.com Sabyasachi De Page No. 2

Fine, is not it? The transaction has 6 instructions to extract the amount from A and submit it to B.

The AFIM will show Rs 900/- in A and Rs 1100/- in B.

Now, suppose there is a power failure just after instruction 3 (Write A) has been complete. What

happens now? After the system recovers the AFIM will show Rs 900/- in A, but the same Rs 1000/-

in B. It would be said that Rs 100/- evaporated in thin air for the power failure. Clearly such a

situation is not acceptable.

The solution is to keep every value calculated by the instruction of the transaction not in any stable

storage (hard disc) but in a volatile storage (RAM), until the transaction completes its last

instruction. When we see that there has not been any error we do something known as a COMMIT

operation. Its job is to write every temporarily calculated value from the volatile storage on to the

stable storage. In this way, even if power fails at instruction 3, the post recovery image of the

database will show accounts A and B both containing Rs 1000/-, as if the failed transaction had never

occurred.

Consistency: If we execute a particular transaction in isolation or together with other transaction,

(i.e. presumably in a multi-programming environment), the transaction will yield the same expected

result.

To give better performance, every database management system supports the execution of multiple

transactions at the same time, using CPU Time Sharing. Concurrently executing transactions may

have to deal with the problem of sharable resources, i.e. resources that multiple transactions are

trying to read/write at the same time. For example, we may have a table or a record on which two

transaction are trying to read or write at the same time. Careful mechanisms are created in order to

prevent mismanagement of these sharable resources, so that there should not be any change in the

way a transaction performs. A transaction which deposits Rs 100/- to account A must deposit the

same amount whether it is acting alone or in conjunction with another transaction that may be trying

to deposit or withdraw some amount at the same time.

Isolation: In case multiple transactions are executing concurrently and trying to access a sharable

resource at the same time, the system should create an ordering in their execution so that they should

not create any anomaly in the value stored at the sharable resource.

www.eazynotes.com Sabyasachi De Page No. 3

There are several ways to achieve this and the most popular one is using some kind of locking

mechanism. Again, if you have the concept of Operating Systems, then you should remember the

semaphores, how it is used by a process to make a resource busy before starting to use it, and how it

is used to release the resource after the usage is over. Other processes intending to access that same

resource must wait during this time. Locking is almost similar. It states that a transaction must first

lock the data item that it wishes to access, and release the lock when the accessing is no longer

required. Once a transaction locks the data item, other transactions wishing to access the same data

item must wait until the lock is released.

Durability: It states that once a transaction has been complete the changes it has made should be

permanent.

As we have seen in the explanation of the Atomicity property, the transaction, if completes

successfully, is committed. Once the COMMIT is done, the changes which the transaction has made

to the database are immediately written into permanent storage. So, after the transaction has been

committed successfully, there is no question of any loss of information even if the power fails.

Committing a transaction guarantees that the AFIM has been reached.

There are several ways Atomicity and Durability can be implemented. One of them is called Shadow

Copy. In this scheme a database pointer is used to point to the BFIM of the database. During the

transaction, all the temporary changes are recorded into a Shadow Copy, which is an exact copy of

the original database plus the changes made by the transaction, which is the AFIM. Now, if the

transaction is required to COMMIT, then the database pointer is updated to point to the AFIM copy,

and the BFIM copy is discarded. On the other hand, if the transaction is not committed, then the

database pointer is not updated. It keeps pointing to the BFIM, and the AFIM is discarded. This is a

simple scheme, but takes a lot of memory space and time to implement.

If you study carefully, you can understand that Atomicity and Durability is essentially the same

thing, just as Consistency and Isolation is essentially the same thing.

Transaction States

There are the following six states in which a transaction may exist:

 Active: The initial state when the transaction has just started execution.

www.eazynotes.com Sabyasachi De Page No. 4

Partially Committed: At any given point of time if the transaction is executing properly,

then it is going towards it COMMIT POINT. The values generated during the execution are

all stored in volatile storage.

Failed: If the transaction fails for some reason. The temporary values are no longer required,

and the transaction is set to ROLLBACK. It means that any change made to the database by

this transaction up to the point of the failure must be undone. If the failed transaction has

withdrawn Rs. 100/- from account A, then the ROLLBACK operation should add Rs 100/- to

account A.

Aborted: When the ROLLBACK operation is over, the database reaches the BFIM. The

transaction is now said to have been aborted.

Committed: If no failure occurs then the transaction reaches the COMMIT POINT. All the

temporary values are written to the stable storage and the transaction is said to have been

committed.

Terminated: Either committed or aborted, the transaction finally reaches this state.

The whole process can be described using the following diagram:

Entry Point

ACTIVE

ABORTED

FAILED

COMMITTED

PARTIALLY

COMMITTED

TERMINATED

www.eazynotes.com Sabyasachi De Page No. 5

Concurrent Execution

A schedule is a collection of many transactions which is implemented as a unit. Depending upon

how these transactions are arranged in within a schedule, a schedule can be of two types:

 Serial: The transactions are executed one after another, in a non-preemptive manner.

 Concurrent: The transactions are executed in a preemptive, time shared method.

In Serial schedule, there is no question of sharing a single data item among many transactions,

because not more than a single transaction is executing at any point of time. However, a serial

schedule is inefficient in the sense that the transactions suffer for having a longer waiting time and

response time, as well as low amount of resource utilization.

In concurrent schedule, CPU time is shared among two or more transactions in order to run them

concurrently. However, this creates the possibility that more than one transaction may need to access

a single data item for read/write purpose and the database could contain inconsistent value if such

accesses are not handled properly. Let us explain with the help of an example.

Let us consider there are two transactions T1 and T2, whose instruction sets are given as following.

T1 is the same as we have seen earlier, while T2 is a new transaction.

 T1

Read A;

 A = A – 100;

 Write A;

 Read B;

 B = B + 100;

 Write B;

 T2

Read A;

 Temp = A * 0.1;

 Read C;

 C = C + Temp;

 Write C;

www.eazynotes.com Sabyasachi De Page No. 6

T2 is a new transaction which deposits to account C 10% of the amount in account A.

If we prepare a serial schedule, then either T1 will completely finish before T2 can begin, or T2 will

completely finish before T1 can begin. However, if we want to create a concurrent schedule, then

some Context Switching need to be made, so that some portion of T1 will be executed, then some

portion of T2 will be executed and so on. For example say we have prepared the following

concurrent schedule.

 T1 T2

Read A;

 A = A – 100;

 Write A;

Read A;

 Temp = A * 0.1;

 Read C;

 C = C + Temp;

 Write C;

 Read B;

 B = B + 100;

 Write B;

No problem here. We have made some Context Switching in this Schedule, the first one after

executing the third instruction of T1, and after executing the last statement of T2. T1 first deducts Rs

100/- from A and writes the new value of Rs 900/- into A. T2 reads the value of A, calculates the

value of Temp to be Rs 90/- and adds the value to C. The remaining part of T1 is executed and Rs

100/- is added to B.

It is clear that a proper Context Switching is very important in order to maintain the Consistency and

Isolation properties of the transactions. But let us take another example where a wrong Context

Switching can bring about disaster. Consider the following example involving the same T1 and T2

www.eazynotes.com Sabyasachi De Page No. 7

 T1 T2

Read A;

 A = A – 100;

Read A;

 Temp = A * 0.1;

 Read C;

 C = C + Temp;

 Write C;

 Write A;

 Read B;

 B = B + 100;

 Write B;

This schedule is wrong, because we have made the switching at the second instruction of T1. The

result is very confusing. If we consider accounts A and B both containing Rs 1000/- each, then the

result of this schedule should have left Rs 900/- in A, Rs 1100/- in B and add Rs 90 in C (as C should

be increased by 10% of the amount in A). But in this wrong schedule, the Context Switching is being

performed before the new value of Rs 900/- has been updated in A. T2 reads the old value of A,

which is still Rs 1000/-, and deposits Rs 100/- in C. C makes an unjust gain of Rs 10/- out of

nowhere.

In the above example, we detected the error simple by examining the schedule and applying common

sense. But there must be some well formed rules regarding how to arrange instructions of the

transactions to create error free concurrent schedules. This brings us to our next topic, the concept of

Serializability.

Serializability

When several concurrent transactions are trying to access the same data item, the instructions within

these concurrent transactions must be ordered in some way so as there are no problem in accessing

and releasing the shared data item. There are two aspects of serializability which are described here:

www.eazynotes.com Sabyasachi De Page No. 8

Conflict Serializability

Two instructions of two different transactions may want to access the same data item in order to

perform a read/write operation. Conflict Serializability deals with detecting whether the instructions

are conflicting in any way, and specifying the order in which these two instructions will be executed

in case there is any conflict. A conflict arises if at least one (or both) of the instructions is a write

operation. The following rules are important in Conflict Serializability:

1. If two instructions of the two concurrent transactions are both for read operation, then they

are not in conflict, and can be allowed to take place in any order.

2. If one of the instructions wants to perform a read operation and the other instruction wants to

perform a write operation, then they are in conflict, hence their ordering is important. If the

read instruction is performed first, then it reads the old value of the data item and after the

reading is over, the new value of the data item is written. It the write instruction is performed

first, then updates the data item with the new value and the read instruction reads the newly

updated value.

3. If both the transactions are for write operation, then they are in conflict but can be allowed to

take place in any order, because the transaction do not read the value updated by each other.

However, the value that persists in the data item after the schedule is over is the one written

by the instruction that performed the last write.

It may happen that we may want to execute the same set of transaction in a different schedule on

another day. Keeping in mind these rules, we may sometimes alter parts of one schedule (S1) to

create another schedule (S2) by swapping only the non-conflicting parts of the first schedule. The

conflicting parts cannot be swapped in this way because the ordering of the conflicting instructions is

important and cannot be changed in any other schedule that is derived from the first. If these two

schedules are made of the same set of transactions, then both S1 and S2 would yield the same result

if the conflict resolution rules are maintained while creating the new schedule. In that case the

schedule S1 and S2 would be called Conflict Equivalent.

View Serializability:

This is another type of serializability that can be derived by creating another schedule out of an

existing schedule, involving the same set of transactions. These two schedules would be called View

Serializable if the following rules are followed while creating the second schedule out of the first.

Let us consider that the transactions T1 and T2 are being serialized to create two different schedules

www.eazynotes.com Sabyasachi De Page No. 9

S1 and S2 which we want to be View Equivalent and both T1 and T2 wants to access the same data

item.

1. If in S1, T1 reads the initial value of the data item, then in S2 also, T1 should read the initial

value of that same data item.

2. If in S1, T1 writes a value in the data item which is read by T2, then in S2 also, T1 should

write the value in the data item before T2 reads it.

3. If in S1, T1 performs the final write operation on that data item, then in S2 also, T1 should

perform the final write operation on that data item.

Except in these three cases, any alteration can be possible while creating S2 by modifying S1.

The above notes are submitted by:

Sabyasachi De

MCA

sabyasachide@yahoo.com

