OPERATING SYSTEM

Maninder Kaur

professormaninder@gmail.com

What is an Operating System?

- Operating System is a software, which makes a computer to actually work.
- It is the software the enables all the programs we use.
- The OS organizes and controls the hardware.
- OS acts as an interface between the application programs and the machine hardware.
- Examples: Windows, Linux, Unix and Mac OS, etc.

What OS does?

- Controlling and allocating memory
- Prioritizing system requests
- Controlling input and output devices
- Facilitating networking
- Managing file systems

Operating System Objectives

Convenience

Makes the computer more convenient to use

Efficiency

Allows computer system resources to be used in an efficient manner

Ability to Evolve

 Permit effective development, testing, and introduction of new system functions without interfering with service

Layers of Computer System

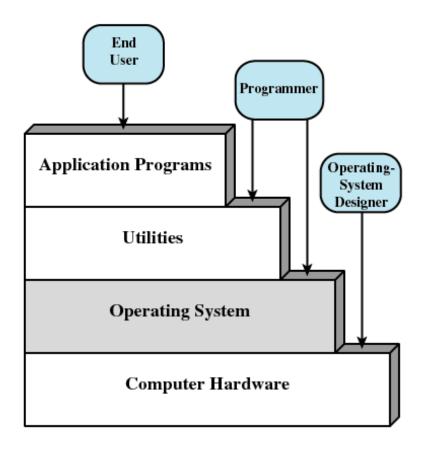


Figure 2.1 Layers and Views of a Computer System

Structure of Operating System

The structure of OS consists of 4 layers:

Hardware

 Hardware consists of CPU, Main memory, I/O Devices, etc.

2. Software (Operating System)

 Software includes process management routines, memory management routines, I/O control routines, file management routines.

Structure of Operating System

3. System programs

This layer consists of compilers, Assemblers, linker etc.

4. Application programs

- This is dependent on users need.
- E.g.: Railway reservation system, Bank database management etc.

Functions of Operating System

- Process Management
- Memory Management
- File Management
- Device Management
- Command Interpretation
- Security

Types of Operating Systems

- Batch Operating System
- Multiprogramming
- Multiprocessing
- Timesharing / Multitasking
- Single User Operating System
- Multiuser Operating System
- Real Time Operating System

Batch Operating System

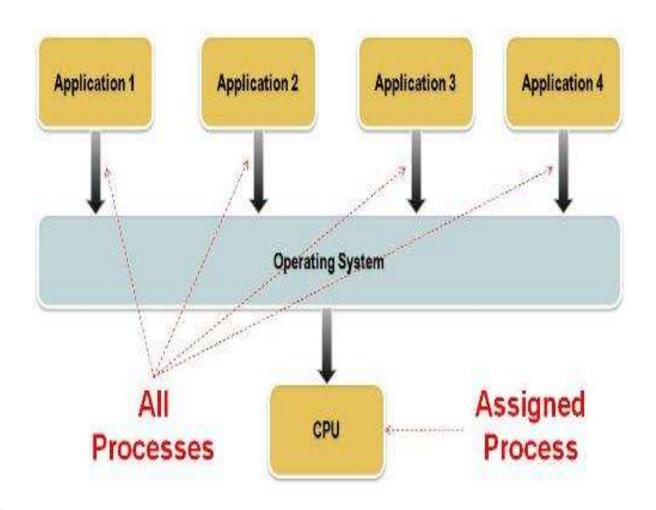
- In Batch processing, same type of jobs batch together and execute at a time.
- The OS was simple, its major task was to transfer control from one job to the next.
- The job was submitted to the computer operator in form of punch cards.
- The monitor is system software that is responsible for interpreting and carrying out the instructions in the batch jobs. When the monitor starts a job, the entire computer is dedicated to the job, which then controls the computer until it finishes.
- The OS was always resident in memory. Common Input devices were card readers and tape drives.

Batch Operating System

- Common output devices were line printers, tape drives, and card punches.
- Users did not interact directly with the computer systems, but he prepared a job (comprising of the program, the data & some control information).

User program area

Multiprogramming

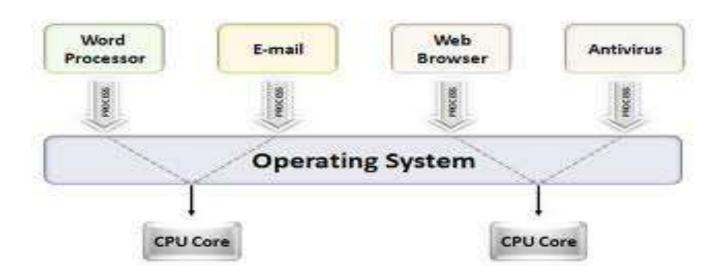

- Multiprogramming is a technique to execute number of programs simultaneously by a single processor.
- In Multiprogramming, number of processes reside in main memory at a time.
- The OS picks and begins to execute one of the jobs in the main memory.
- If any I/O wait happened in a process, then CPU switches from that job to another job.
- Hence CPU in not idle at any time.

Multiprogramming

OS
Job 1
Job 2
Job 3
Job 4
Job 5

- Figure depicts the layout of multiprogramming system.
- The main memory consists of 5 jobs at a time, the CPU executes one by one.
- Advantages:
- Efficient memory utilization
- Throughput increases
- CPU is never idle, so performance increases.

Multiprogramming

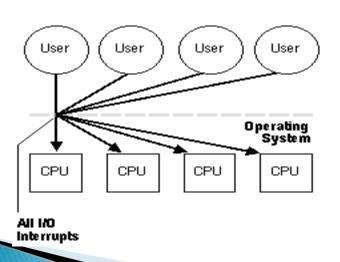


Timesharing

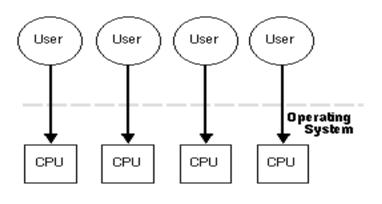
- Simultaneous interactive use of a computer system by many users in such a way that each one feels that he/she is the sole user of he system.
- Multiple jobs are executed by switching the CPU between them.
- In this, the CPU time is shared by different processes, so it is called as "Time sharing Systems".
- Time slice is defined by the OS, for sharing CPU time between processes. CPU is taken away from a running process when the allotted time slice expires.
- Examples: Multics, Unix, etc.

Advantages of Timesharing

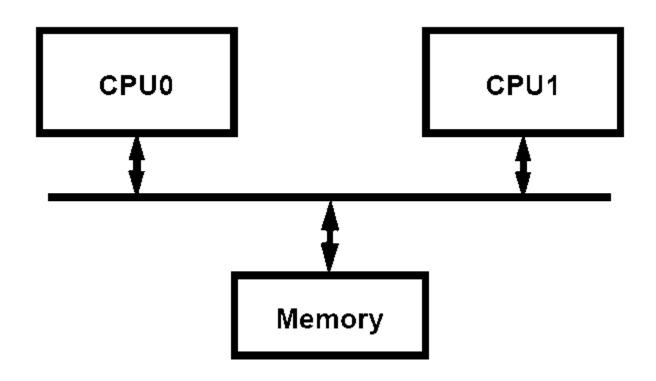
- Reduces CPU Idle time.
- Provides advantages of quick response time.
- Offers good computing facility to small users.


Multiprocessing

- Multiprocessing is the use of two or more central processing units (CPUs) within a single computer system.
- The term also refers to the ability of a system to support more than one processor and the ability to allocate tasks between them.
- An operating system capable of supporting and utilizing more than one computer processor.
- Below are some examples of multiprocessing operating systems.
 - Linux
 - Unix
 - Windows 2000


Multiprocessing

- Systems that treat all CPUs equally are called symmetric multiprocessing (SMP) systems.
- If all CPUs are not equal, system resources may be divided in a number of ways, including asymmetric multiprocessing (ASMP),


Asymmetric Multiprocessing:

Symmetric Multiprocessing:

Multiprocessing

Single User Operating System

Provides a platform for only one user at a time.

Single-User, Single Tasking

- As the name implies, this operating system is designed to manage the computer so that one user can effectively do one thing at a time.
- The Palm OS for Palm handheld computers is a good example of a modern single-user, single-task operating system.

Single-User, Multi-Tasking

- This is the type of operating system most people use on their desktop and laptop computers today.
- Example Microsoft's Windows, it's entirely possible for a Windows user to be writing a note in a word processor while downloading a file from the Internet while printing the text of an e-mail message.

Multi-User Operating System

- Provides regulated access for a number of users by maintaining a database of known users.
- Refers to computer systems that support two or more simultaneous users.
- Another term for multi-user is time sharing.
- E.g.: All mainframes are multi-user systems.

Real Time Operating System

- Real-time operating systems are used to control machinery, scientific instruments and industrial systems.
- A system is said to be Real Time if it is required to complete it's work & deliver it's services on time.
- Example Food Processing System, Flight Control System
- All tasks in that system must execute on time.

Types of RTOS

Soft Real Time System

 In Soft Real Time System, tasks are completed as fast as possible without having to be completed within a specified timeframe.

Hard Real Time System

 In Hard Real Time System however, not only must tasks be completed within a specified timeframe, but they must also be completed correctly.

The Operating System: What It Does Task Management

	No. of Users	No. of Processors	Order of Processing
Multi-tasking	One	One	Concurrently
Multiprogramming	Multiple	One	Concurrently
Timesharing	Multiple	One	Round Robin
Multiprocessing	One or more	Two or more	Simultaneously

Thanks a Lot