Program 16: Multiply two 8-bit numbers.

Flowchart:

Program:

Address	Mnemonics	Operand	Opcode	Remarks
2000	LXI	H, 3000H	21	Load H-L pair with address 3000H.
2001			00	Lower-order of 3000H.
2002			30	Higher-order of 3000H.
2003	MOV	B, M	46	Move the 1 $^{\text {st }}$ operand from memory to reg. B.
2004	INX	H	23	Increment H-L pair.
2005	MOV	C, M	4 E	Move the 2 ${ }^{\text {nd }}$ operand from memory to reg. C.
2006	MVI	A, 00H	3 E	Initialize accumulator with 00H.
2007			00	Immediate value 00H.
2008	ADD	B	80	Add B with A.
2009	DCR	C	0 D	Decrement reg. C (counter).
200 A	JNZ	2008 H	C2	Jump back to address 2008H if C $\neq 0$.
200 B			08	Lower-order of 2008H.
200 C			20	Higher-order of 2008H.
200 D	INX	H	23	Increment H-L pair.
200 E	MOV	M, A	77	Move the result from accumulator to memory.
200 F	HLT		76	Halt.

Explanation:

- This program multiplies two operands stored in memory location 3000 H and 3001 H , using successive addition method.
- In successive addition method, the second operand is considered as counter, and the first number is added with itself until counter decrements to zero.
- Let us assume that the operands stored at memory location 3000 H is 02 H and 3001 H is 05 H .
- Then, by using successive addition method, we get $02 \mathrm{H}+02 \mathrm{H}+02 \mathrm{H}+02 \mathrm{H}+02 \mathrm{H}=0 \mathrm{AH}$.
- Initially, H-L pair is loaded with the address of first memory location.
- The first operand is moved to register B from memory location 3000 H and H-L pair is incremented to point to next memory location.
- The second operand is moved to register C from memory location 3001H to act as counter.
- Accumulator is initialized to 00 H .
- Register B is added with accumulator and the result is stored in accumulator.
- Register C (counter) is decremented by 1.
- Then, counter is checked for zero. If it hasn't become zero yet, then register B is again added with accumulator, and counter is again checked for zero.
- If counter becomes zero, then H-L pair is incremented and the result is moved from accumulator to memory location 3002 H .

Output:

Before Execution:

3000H: 02 H
3001H: 05 H

After Execution:

3002H: 0AH

