

INTRODUCTION

- By having a coprocessor, which performs all the calculations, it can free up a lot of CPU's time.
- This would allow the CPU to focus all of its resources on the other functions it has to perform.
- This increases the overall speed and performance of the entire system.
- This coprocessor introduced about 60 new instructions available to the programmer.
- All the mnemonics begin with "F" to differentiate them from the standard 8086 instructions.
- For e.g.: in contrast to ADD/MUL, 8087 provide FADD/FMUL.

INTRODUCTION • Math coprocessor is also called as: • Numeric Processor Extension (NPX) • Numeric Data Processor (NDP) • Floating Point Unit (FPU)

 The internal structure of 8087 coprocessor is divided into two major sections: 20-Nov-10

WW

å

- Control Unit (CU)
- Numerical Execution Unit (NEU)

CONTROL UNIT (CU) It interfaces coprocessor to the microprocessor system bus. It also synchronize the operation of the coprocessor and the microprocessor. This unit has a Control Word, Status Word and Data Buffer. If an instruction is ESC instruction, then coprocessor executes it. If not, then microprocessor executes.

Pin Diagram of 8087 GND $\begin{bmatrix} 1 & 40 \\ 40 \\ AD_{4} \end{bmatrix} V_{cc}$ AD ₁₅ AD ₁₅ AD ₁₅ 3 38 A ₁₆ /S ₅ AD ₁₇ 4 37 A ₁₇ /S ₄ AD ₁₉ 6 36 A ₁₆ /S ₅ AD ₁₉ 7 8 34 BHE/S ₇ AD ₁ 8 33 RC/GT ₁ AD ₁ 10 8 31 RC/GT ₀ AD ₁ 12 7 28 NC AD ₁ 13 28 $\frac{S_2}{S_1}$ AD ₁ 15 26 $\frac{S_2}{S_0}$ AD ₁ 15 26 $\frac{S_2}{S_0}$ AD ₁ 15 26 $\frac{S_2}{S_0}$ AD ₁ 16 25 $\frac{S_2}{S_0}$ AD ₁ 17 24 $\frac{S_1}{S_1}$
--

