Memory Segmentation

- The total memory size is divided into segments of various sizes.
- A segment is just an area in memory.
- The process of dividing memory this way is called **Segmentation**.
Memory Segmentation

- In memory, data is stored as bytes.
- Each byte has a specific address.
- Intel 8086 has 20 lines address bus.
- With 20 address lines, the memory that can be addressed is 2^{20} bytes.
- $2^{20} = 1,048,576$ bytes (1 MB).
- 8086 can access memory with address ranging from 00000 H to FFFFF F H.
Memory Segmentation

- In 8086, memory has four different types of segments.
- These are:
 - Code Segment
 - Data Segment
 - Stack Segment
 - Extra Segment
Segment Registers

- Each of these segments are addressed by an address stored in corresponding segment register.
- These registers are 16-bit in size.
- Each register stores the base address (starting address) of the corresponding segment.
- Because the segment registers cannot store 20 bits, they only store the upper 16 bits.
Segment Registers
Segment Registers

- How is a 20-bit address obtained if there are only 16-bit registers?
- The answer lies in the next few slides.
- The 20-bit address of a byte is called its **Physical Address**.
- But, it is specified as a **Logical Address**.
- Logical address is in the form of:

 Base Address : Offset

- Offset is the displacement of the memory location from the starting location of the segment.
Example

- The value of Data Segment Register (DS) is 2222 H.
- To convert this 16-bit address into 20-bit, the BIU appends 0H to the LSBs of the address.
- After appending, the starting address of the Data Segment becomes 22220H.
Example (Contd.)

- If the data at any location has a logical address specified as:

 \[2222 \text{ H} : 0016 \text{ H} \]

- Then, the number 0016 H is the offset.

- 2222 H is the value of DS.
Example (Contd.)

- To calculate the effective address of the memory, BIU uses the following formula:
 - Effective Address = Starting Address of Segment + Offset

- To find the starting address of the segment, BIU appends the contents of Segment Register with 0H.

- Then, it adds offset to it.
Example (Contd.)

Therefore:

\[\text{EA} = 22220 \text{ H} + 0016 \text{ H} \]

\[\text{-------------} \]

\[22236 \text{ H} \]
Example (Contd.)

Addressed Byte

Offset = 0016 H

BYTE – 0
BYTE – 1
BYTE – 2

2220 H
22220 H
22236 H

2222 H
DS Register
Max. Size of Segment

- All offsets are limited to 16-bits.
- It means that the maximum size possible for a segment is $2^{16} = 65,535$ bytes (64 KB).
- The offset of the first location within the segment is 0000 H.
- The offset of the last location in the segment is FFFF H.
Where to Look for the Offset

<table>
<thead>
<tr>
<th>Segment</th>
<th>Offset Registers</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>IP</td>
<td>Address of the next instruction</td>
</tr>
<tr>
<td>DS</td>
<td>BX, DI, SI</td>
<td>Address of data</td>
</tr>
<tr>
<td>SS</td>
<td>SP, BP</td>
<td>Address in the stack</td>
</tr>
<tr>
<td>ES</td>
<td>BX, DI, SI</td>
<td>Address of destination data (for string operations)</td>
</tr>
</tbody>
</table>
Question

- The contents of the following registers are:
 - CS = 1111 H
 - DS = 3333 H
 - SS = 2526 H
 - IP = 1232 H
 - SP = 1100 H
 - DI = 0020 H

- Calculate the corresponding physical addresses for the address bytes in CS, DS and SS.
Solution

1. **CS = 1111 H**
 - The base address of the code segment is 11110 H.
 - Effective address of memory is given by $11110H + 1232H = 12342H$.

2. **DS = 3333 H**
 - The base address of the data segment is 33330 H.
 - Effective address of memory is given by $33330H + 0020H = 33350H$.

3. **SS = 2526 H**
 - The base address of the stack segment is 25260 H.
 - Effective address of memory is given by $25260H + 1100H = 26350H$.
Thank You 🙋‍♂️
Have a Nice Day