
1/27/2011

1

THREADS

Gursharan Singh Tatla
professorgstatla@gmail.com

2
7
-J

a
n-11

1

w
w

w
.e

a
zyn

o
te

s
.c

o
m

THREAD

 A thread is a single sequential flow of execution of 
the tasks of a process.

 A thread is a lightweight process and the smallest 
unit of CPU utilization. Thus, a thread is like a 
miniprocess.

 Each thread has a thread id, program counter, 
register set and a stack.

 A thread undergoes different states such as new, 
ready, running, waiting and terminated similar to 
that of a process.

 However, a thread is not a program as it cannot run 
on its own. It runs within a program.

2
7
-J

a
n-11

2

w
w

w
.e

a
zyn

o
te

s
.c

o
m

MULTI-THREADING

 A process can have single thread of control or 
multiple threads of control.

 If a process has single thread of control, it can 
perform only one task at a time.

 Many modern operating systems have extended 
the process concept to allow a process to have 
multiple threads.

 Thus, allowing the process to perform multiple 
tasks at the same time.

 This concept is known as Multi-Threading.

2
7
-J

a
n-11

3

w
w

w
.e

a
zyn

o
te

s
.c

o
m

MULTI-THREADING

 For e.g.:

 The tasks in a web browser are divided into multiple 
threads.

 Downloading the images, downloading the text and 
displaying images and text.

 While one thread is busy in downloading the images, 
another thread displays it.

 The various operating systems the implement 
multithreading are Windows XP, Vista, 7, Server 
2000 onwards, Linux etc.

 In multithreading, a thread can share its code, data 
and resources with other threads of same process.

2
7
-J

a
n-11

4

w
w

w
.e

a
zyn

o
te

s
.c

o
m

SINGLE THREAD & MULTI-THREAD

2
7
-J

a
n-11

5

w
w

w
.e

a
zyn

o
te

s
.c

o
m

THREADS & PROCESSES

 An idea of how threads & processes can be related 
to each other is depicted in the fig.:

2
7
-J

a
n-11

6

w
w

w
.e

a
zyn

o
te

s
.c

o
m



1/27/2011

2

THREADS & PROCESSES

 There are several similarities and differences 
between a thread and a process:

 Similarities:

 Like process, each thread has its own program counter and 
stack.

 Threads share CPU just as a process.

 Threads also run sequentially, like a process.

 Threads can create child threads.

 Threads have the same states as process: new, ready, 
running, waiting and terminated.

2
7
-J

a
n-11

7

w
w

w
.e

a
zyn

o
te

s
.c

o
m

THREADS & PROCESSES

 Differences:

 Each process has its own distinct address space in the main 
memory. On the other hand, all threads of a same process 
share same address space.

 Threads require less system resources than a process.

 Threads are not independent of each other, unlike processes.

 Threads take less time for creation and termination than a 
process.

 It takes less time to switch between two threads than to switch 
between two processes.

2
7
-J

a
n-11

8

w
w

w
.e

a
zyn

o
te

s
.c

o
m

TYPES OF THREADS

 Threads are of three types:

 Kernel Level Threads

 User Level Threads

 Hybrid Threads

2
7
-J

a
n-11

9

w
w

w
.e

a
zyn

o
te

s
.c

o
m

KERNEL LEVEL THREADS

 Threads of processes defined by operating system 
itself are called Kernel Level Threads.

 In these types of threads, kernel performs thread 
creation, scheduling and management.

 Kernel threads are used for internal workings of 
operating system.

 Kernel threads are slower to create and manage.

 The various operating systems that support kernel 
level threads are: Windows 2000, XP, Solaris 2.

2
7
-J

a
n-11

10

w
w

w
.e

a
zyn

o
te

s
.c

o
m

USER LEVEL THREADS

 The threads of user application process are called 
User Level Threads.

 They are implemented in the user space of main 
memory.

 User level library (functions to manipulate user 
threads) is used for thread creation, scheduling and 
management without any support from the kernel.

 User level threads are fast to create and manage.

2
7
-J

a
n-11

11

w
w

w
.e

a
zyn

o
te

s
.c

o
m

HYBRID THREADS

 In hybrid approach, both kernel level threads and 
user level threads are implemented.

 For e.g.: Solaris 2.

2
7
-J

a
n-11

12

w
w

w
.e

a
zyn

o
te

s
.c

o
m



1/27/2011

3

MULTI-THREADING MODELS

 Depending on the support for user and kernel 
threads, there are three multithreading models:

 Many-to-One Model

 One-to-One Model

 Many-to-Many Model

2
7
-J

a
n-11

13

w
w

w
.e

a
zyn

o
te

s
.c

o
m

MANY-TO-ONE MODEL

 In this model, many user level threads are mapped 
to one kernel level thread.

 Threads are managed in user space.

2
7
-J

a
n-11

14

w
w

w
.e

a
zyn

o
te

s
.c

o
m

ONE-TO-ONE MODEL

 In this model, each user level thread is mapped to 
one kernel level thread.

2
7
-J

a
n-11

15

w
w

w
.e

a
zyn

o
te

s
.c

o
m

MANY-TO-MANY MODEL

 In this model, many user level threads are mapped 
to many kernel level threads.

2
7
-J

a
n-11

16

w
w

w
.e

a
zyn

o
te

s
.c

o
m

17


