
THREADS

Gursharan Singh Tatla

professorgstatla@gmail.com

2
7

-J
a

n
-1

1

1

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



THREAD

 A thread is a single sequential flow of execution of 

the tasks of a process.

 A thread is a lightweight process and the smallest 

unit of CPU utilization. Thus, a thread is like a 

miniprocess.

 Each thread has a thread id, program counter, 

register set and a stack.

 A thread undergoes different states such as new, 

ready, running, waiting and terminated similar to 

that of a process.

 However, a thread is not a program as it cannot run 

on its own. It runs within a program.

2
7

-J
a

n
-1

1

2

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



MULTI-THREADING

 A process can have single thread of control or 

multiple threads of control.

 If a process has single thread of control, it can 

perform only one task at a time.

 Many modern operating systems have extended 

the process concept to allow a process to have 

multiple threads.

 Thus, allowing the process to perform multiple 

tasks at the same time.

 This concept is known as Multi-Threading.

2
7

-J
a

n
-1

1

3

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



MULTI-THREADING

 For e.g.:

 The tasks in a web browser are divided into multiple 

threads.

 Downloading the images, downloading the text and 

displaying images and text.

 While one thread is busy in downloading the images, 

another thread displays it.

 The various operating systems the implement 

multithreading are Windows XP, Vista, 7, Server 

2000 onwards, Linux etc.

 In multithreading, a thread can share its code, data 

and resources with other threads of same process.

2
7

-J
a

n
-1

1

4

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



SINGLE THREAD & MULTI-THREAD
2

7
-J

a
n

-1
1

5

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



THREADS & PROCESSES

 An idea of how threads & processes can be related 

to each other is depicted in the fig.:

2
7

-J
a

n
-1

1

6

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



THREADS & PROCESSES

 There are several similarities and differences 

between a thread and a process:

 Similarities:

 Like process, each thread has its own program counter and 

stack.

 Threads share CPU just as a process.

 Threads also run sequentially, like a process.

 Threads can create child threads.

 Threads have the same states as process: new, ready, 

running, waiting and terminated.

2
7

-J
a

n
-1

1

7

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



THREADS & PROCESSES

 Differences:

 Each process has its own distinct address space in the main 

memory. On the other hand, all threads of a same process 

share same address space.

 Threads require less system resources than a process.

 Threads are not independent of each other, unlike processes.

 Threads take less time for creation and termination than a 

process.

 It takes less time to switch between two threads than to switch 

between two processes.

2
7

-J
a

n
-1

1

8

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



TYPES OF THREADS

 Threads are of three types:

 Kernel Level Threads

 User Level Threads

 Hybrid Threads

2
7

-J
a

n
-1

1

9

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



KERNEL LEVEL THREADS

 Threads of processes defined by operating system 

itself are called Kernel Level Threads.

 In these types of threads, kernel performs thread 

creation, scheduling and management.

 Kernel threads are used for internal workings of 

operating system.

 Kernel threads are slower to create and manage.

 The various operating systems that support kernel 

level threads are: Windows 2000, XP, Solaris 2.

2
7

-J
a

n
-1

1

10

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



USER LEVEL THREADS

 The threads of user application process are called 

User Level Threads.

 They are implemented in the user space of main 

memory.

 User level library (functions to manipulate user 

threads) is used for thread creation, scheduling and 

management without any support from the kernel.

 User level threads are fast to create and manage.

2
7

-J
a

n
-1

1

11

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



HYBRID THREADS

 In hybrid approach, both kernel level threads and 

user level threads are implemented.

 For e.g.: Solaris 2.

2
7

-J
a

n
-1

1

12

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



MULTI-THREADING MODELS

 Depending on the support for user and kernel 

threads, there are three multithreading models:

 Many-to-One Model

 One-to-One Model

 Many-to-Many Model

2
7

-J
a

n
-1

1

13

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



MANY-TO-ONE MODEL

 In this model, many user level threads are mapped 

to one kernel level thread.

 Threads are managed in user space.

2
7

-J
a

n
-1

1

14

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



ONE-TO-ONE MODEL

 In this model, each user level thread is mapped to 

one kernel level thread.

2
7

-J
a

n
-1

1

15

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



MANY-TO-MANY MODEL

 In this model, many user level threads are mapped 

to many kernel level threads.

2
7

-J
a

n
-1

1

16

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m



17


